Quiz 12 Solutions

1) Consider the coupled spring-mass system shown below. Take $m_{1}=m_{2}=2$, $k_{1}=k_{3}=2$, and $k_{2}=3$. You can ignore resistance for this problem.

a) Find a 4×4 matrix M so that the motion of the masses can be modeled by

$$
\left[\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
v_{1}^{\prime} \\
v_{2}^{\prime}
\end{array}\right]=M\left[\begin{array}{l}
x_{1} \\
x_{2} \\
v_{1} \\
v_{2}
\end{array}\right] .
$$

$$
\begin{aligned}
& 2 x_{1}^{\prime \prime}=-2 x_{1}+3\left(x_{2}-x_{1}\right)=-5 x_{1}+3 x_{2} \\
& 2 x_{2}^{\prime \prime}=-3\left(x_{2}-x_{1}\right)-2 x_{2}=3 x_{1}--5 x_{2}
\end{aligned}
$$

$$
\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
v_{1}^{\prime} \\
v_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-5 / 2 & 3 / 2 & 0 & 0 \\
3 / 2 & -5 / 2 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
v_{1} \\
v_{2}
\end{array}\right] .
$$

b) If your matrix M is correct, $\lambda=i$ should be an eigenvalue. Find a corresponding eigenvector for this eigenvalue.

$$
\left[\begin{array}{cccc|c}
-i & 0 & 1 & 0 & 0 \\
0 & -i & 0 & 1 & 0 \\
-5 / 2 & 3 / 2 & -i & 0 & 0 \\
3 / 2 & -5 / 2 & 0 & -i & 0
\end{array}\right] \sim\left[\begin{array}{cccc|c}
1 & 0 & 0 & i & 0 \\
0 & 1 & 0 & i & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

This means we need a vector \vec{v} satisfying $v_{1}=-i v_{4}, v_{2}=-i v_{4}$, and $v_{3}=v_{4}$ with v_{4} free. Choosing $v_{4}=-1$ gives us one such eigenvector.

$$
\vec{v}=\left[\begin{array}{c}
i \\
i \\
-1 \\
-1
\end{array}\right]
$$

Any (complex) multiple of this vector would also work!
2) Two tanks are being used to prepare mixtures of a salt solution. Both tanks are being held at a constant volume of 100 L with the flow rates as shown in the diagram below.

a) Set-up a system of inhomogeneous first-order linear differential equations that describes the total amounts of salt in tanks \mathbf{A} and \mathbf{B} at time t. Use $x(t)$ for the total amount of salt in tank \mathbf{A}, and $y(t)$ for the total amount of salt in tank B.
b) Find the particular solution to this inhomogeneous system. You DO NOT need to find the homogeneous solution.
a)

$$
\begin{aligned}
& \frac{d x}{d t}=10-40\left(\frac{x}{100}\right)+20\left(\frac{y}{100}\right)=-\frac{2}{5} x+\frac{1}{5} y+10 \\
& \frac{d y}{d t}=15+10\left(\frac{x}{100}\right)-30\left(\frac{y}{100}\right)=\frac{1}{10} x-\frac{3}{10} y+15
\end{aligned}
$$

In vector-form, the system is modeled by

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-2 / 5 & 1 / 5 \\
1 / 10 & -3 / 10
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
10 \\
15
\end{array}\right] .
$$

b) Since the inhomogeneous term is a constant, we guess a particular solution of the form

$$
\overrightarrow{x_{p}}(t)=\left[\begin{array}{l}
a \\
b
\end{array}\right] .
$$

Running this through the ODE gives

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{cc}
-2 / 5 & 1 / 5 \\
1 / 10 & -3 / 10
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]+\left[\begin{array}{l}
10 \\
15
\end{array}\right]
$$

which is equivalent to the system of equations

$$
\begin{aligned}
2 a-b & =50 \\
-a+3 b & =150 .
\end{aligned}
$$

The solution to this system is $a=60, b=70$ which gives a particular solution of

$$
\overrightarrow{x_{p}}(t)=\left[\begin{array}{l}
60 \\
70
\end{array}\right] .
$$

Note that this means the concentration in tank \mathbf{A} will limit to $3 / 5 \mathrm{~kg} / \mathrm{L}$ while the concentration in tank \mathbf{B} will limit to $7 / 10 \mathrm{~kg} / \mathrm{L}$.

